高一解析几何题(圆)

2025-09-12 03:01:42
推荐回答(3个)
回答1:

(1)方程c化为:(x-1)^2+(y-2)^2=5-m
要使c为圆,只须:r^2=5-m>0
so m<5
(2)L:x+2y-4=0 so x=4-2y <1>
把<1>代入c:(3-2y)^2+(y-2)^2=5-m
整理得:5y^2-16y+8+m=0
so y1+y2=16/5
y1·y2=(m+8)/5
so (y1-y2)^2=(y1+y2)^2-4y1y2=(96-20m)/25 <2>
又/MN/=4/根号5
so /MN/^2=(x1-x2)^2+(y1-y2)^2
=(4-2y1-4-2y2)^2+(y1-y2)^2
=5(y1-y1)^2
=16/5 <3>
结合<2><3>得:(y1-y2)^2=(96-20m)/25=16/25
so 96-20m=16
so m=4满足(1)中m<5
所以得解:m=4

回答2:

解:(1)将圆的方程化为标准方程:(x-1)²+(y-2)²=5-m.∴5-m>0.===>m<5.(2)由前可知,圆C的圆心C(1,2),半径r=√(5-m).圆心到直线x+2y-4=0的距离d=1/√5.∴由“垂径定理”及“勾股定理”可得:(5-m)=(1/5)+(4/5)=1.===>m=4.

回答3:

1.由题意得:x^2-2x+1+y^2-4y+4-5+m=o
(x-1)^2+(y-2)^2-5+m=0
(x-1)^2+(y-2)^2=5-m
故02.你画出图来,将圆点(1,2)和MN的中点连起来,然后构建直角三角形,勾股定理求出半径,就知道m的值了。